
Concepts of QJ-Pro

1. Introduction

No programming language is perfect. Every language has it's pro's and con's. As the world
over the years gains programming experience, the application of language features and the
typical language weaknesses and risks become visible. Then the "best programming
practices" arise, specifying the tips, tricks, do's and don'ts of the language. For Java over the
past years numerous books and articles have been written and it is fair to say that the Java
best practices are currently well documented.

No Java developer is perfect. Junior developers might not know the language very well or
lack experience. Experienced developers might not be informed on the latest best practices or
enter a new type of application domain. Even very skilled programmers might not be
concentrated for a while and introduce code errors.

QJ-Pro is a static analysis tool that checks the developers source code, warns for error prone
programming constructs and uses the world's Java best programming practices to support the
developer with knowledge and examples for code improvement. QJ-Pro is both a safety net
and a learning tool. The junior as well as the experienced developer can use it to improve the
quality of their source code (and thereby the quality of the software application) and to
improve their own Java knowledge and programming skills.

Page 1
Copyright © 2004 GPL License. All rights reserved.

QJ-Pro usage
QJ-Pro is based upon three fields of study.

• Static Analysis using modern compiler technology for source code checking.
• Java Pattern Languages being the carrier of Java's best programming practices and a

vehicle for knowledge transfer.
• Total Quality Management as a mature methodology for quality planning, quality control

and quality improvement.

Each of the disciplines are well known and respected. They are integrated and build in
QJ-Pro to provide a fully-fledged solution for code checking and code quality improvement.

2. Static Analysis

Static analysis is an automated technique to "walk through" the source code (available in
*.java files) and recognize certain code constructs. A great number of different code
constructs can be recognized and each of these are implemented by means of a QJ-Pro
"Check". Checks are based on "Rules". A rule defines a good programming practice and the

Concepts of QJ-Pro

Page 2
Copyright © 2004 GPL License. All rights reserved.

related check can determine if the rule is applied. If the rule is not applied , QJ-Pro will issue
an "Observation" message. Example:

• Check: 59
• Observation: "The body of a catch clause should contain at least one statement."
• Rule: "An exception usually signals undesired or unexpected results during program

execution. If such a situation occurs, appropriate measures should be taken, and these
measures have to be programmed in the catch clause. It is good practice to print at least a
warning message. It helps finding problems in your program."

In addition to the rule based checks, there are checks based on code quality metrics. The most
commonly used Java code metrics are evaluated and if (configurable) rating values are
exceeded, an observation message is issued. Example:

• Check: 50
• Observation: "The static path count of a method, i.e., the upperbound of all possible paths

through a method, should be less than 20."
• Rule: "The static path count is directly related to testability of software. The smaller it is,

the easier it is to test your program."

In the example, the rating value is set to "20". This value can be altered by the user of
QJ-Pro.

The checks are identified with a number ("59"). This number also identifies the observation
and the rule because each unique check is based on a unique rule that will generate a unique
observation (a one to one to one relationship). Further on in this document we will use this
number to identify the check, the related observation and the related rule (e.g. check 59,
observation 59 and rule 59).

QJ-Pro contains many checks and new checks are added each release. The developer can
manually turn checks, or groups of checks, on or o ff. When the source code is analyzed by
QJ-Pro (an analysis run) all selected checks are evaluated and if rule non-compliance's are
recognized (a hit) an observation message is generated.

The observation and the rule indicate the programming practice and ' how the code can be
improved. In addition there is a link to the quality characteristics of the source code and the
quality of the resulting software application. These are expressed using "Impact Levels" and
"Quality Attributes". An Impact Level and a Quality Attribute is assigned to each rule. An
Impact Level (1 thru 5) expresses the need and the effect of improvement. The Quality
Attribute indicates the quality characteristic that is related to the rule. Example:

• Rule 59
• Impact level = 4 (Software User); this means that the user of the software application

might encounter strange and unexpected behavior.
• Quality Attribute = "Failure Liability"; this means that there is a chance that the rule

Concepts of QJ-Pro

Page 3
Copyright © 2004 GPL License. All rights reserved.

non-compliance results in a software error.

The Impact Levels and Quality Attributes are an effective tool to judge if a certain rule
should be implemented and to set priorities if there are many observations. They provide a
link between the individual code construct and the behavior and characteristics of the
resulting software application and the code as a whole. QJ-Pro furthermore allows rule
selection using Impact Levels and Quality Attributes. An Impact level or Quality Attribute
can be switched off. All checks that relate to the Impact Level or Quality Attribute are then
disabled.

3. Java patterns

Best practices can be characterized by (many) parts of practical knowledge, each offering a
solution to a certain problem or challenge in a certain context. A Pattern is a popular and
well-accepted method for documenting best practices. Patterns were introduced by the
building architect Christopher Alexander in the book "The Timeless Way of
Building"(1979). Within the computer society, the use of patterns became popular with the
book "Design patterns: Elements of reusable object-oriented software" (1995) by Gamma et
al. Over the past years many books and articles containing patterns have been written.

A pattern is a structured piece of text containing specific practical knowledge. Usually a
pattern takes one or two pages. The pattern is structured by a fixed number of sections each
containing a specific element. The following elements are essential for a pattern.

• Name; name of the pattern.
• Problem Description; this section describes when to apply the pattern and the problem

and its context.
• Forces; this section describes the often contradictory considerations to be considered

when choosing a solution to the problem.
• Solution; this section describes the solution to the problem.
• Consequences; this section describes the results and trade-offs of applying the pattern.

Some other sections can be added for specific types of patterns. Java patterns usually contain
sections with code examples: "Sample Code" and "Improved Code". A special kind of
patterns that deal with programming practices are sometimes called "Idioms". In the
remainder of this document the term pattern includes the idiom type. A "Pattern Language" is
a structured collection of patterns that build on each other. QJ-Pro contains a pattern
language.

QJ-Pro makes use of patterns in two ways. In the first place, the use of patterns plays a key
role in the development of QJ-Pro. The developers of QJ-Pro have a database of patterns at
their disposal. All published (Java, C++, Smalltalk) patterns books, articles on patterns and
patterns internet sites are brought together in a knowledge database. Newly published books

Concepts of QJ-Pro

Page 4
Copyright © 2004 GPL License. All rights reserved.

and articles are added regularly. The published patterns act as input for the design of new
rules. Each set of new QJ-Pro rules is based on a "Java Theme". This is a topic of Java
programming, treated on a higher level of abstraction and specified using the pattern format.
This theme pattern is designed for QJ-Pro and is based on existing published patterns and
represents the world's knowledge and experience on Java programming. Example:

• Theme Pattern: Exception Handling
• Related Rules 9, 56, 57, 58, 59 and 63

Secondly patterns are used to transfer programming knowledge to the user of QJ-Pro. The
theme patterns are available in the QJ-Pro Rules Guide.

QJ-Pro provides information and knowledge on three levels of abstraction.

• The observation provides brief information on what rule is disregarded and at what
location in the source code. The related quality attribute and impact level indicate what
software quality characteristic is affected and what quality related risks are involved

• The rule specifies the programming practice that should be applied and information on
improvement.

• The pattern provides the developer with a deeper understanding of the principles involved
and the reason why the rule should be applied.

Knowing and understanding patterns will increase the quality of the code and improve the
developer's skills. Kent Beck, author of the book "Smalltalk Best Practice Patterns", explains
the use of patterns as follows.

"To my mind, most programming is not about going up on the mountaintop, being struck by
lightning, and bringing down "the answer" carved on stone tablets. Most programming is
applying yesterday's solutions to today's problems. Most of the time a client is convinced I
am a genius, I've just applied a pattern that they don't know. I'm not a great programmer, I'm
a pretty good programmer with great habits."

4. Total Quality Management

The features of Qstudio for Java are based on the principles of Total Quality Management
(TQM) as developed by W.A. Shewhard, W.E. Deming and J.M. Juran. TQM is an accepted
and mature approach towards quality management and applied in all branches of industry.
There are many "guru's" that contributed to the development of TQM. Although their
practical implementation might differ they share the same conceptual foundation. The
following TQM concepts are used within QJ-Pro.

• Quality (definition)
• Multi customer focus
• Quality control

Concepts of QJ-Pro

Page 5
Copyright © 2004 GPL License. All rights reserved.

• Continuous quality improvement

5. Quality and Customer focus

TQM defines "Quality" in a broad sense and applies it to products (objects) as well as
processes (activities). Quality is not just "Freedom of deficiencies" but also "Meeting
customer needs" and in turn the customers are defined as "All that are affected by the quality
characteristics of the product or process both internally (people who develop the product) as
externally (people who buy and use the product)". Furthermore TQM states that quality
should be specified using objective quantitative indicators.

As a result of the multiple users having multiple needs, one single indicator can not express
the level of quality. The manager of the software development department would like the
software to be maintainable to cut down on maintenance costs while the actual user of the
software product is more interested in useabilty and performance.

These concepts are adopted within Qstudio for Java. Quality is specified in an objective and
measurable way using a "Quality Attribute Tree". Quality is measured using hit scores on
metrics based checks and rule based checks. Note that by assigning quality attributes to the
rules, in addition to the traditional code quality metrics (e.g. cyclomatic complexity, static
path count etc.), a new type of metrics arise. As an example the number of hits on rules that
are related to "Structuredness" is a measure for the structuredness of the code.

The impact levels are defined by distinguishing three customers: the Software Product User
(the person using the (Java) software), the Software Process Owner (the person in charge of
the Java software development process) and the Software Developer (the person writing Java
code and using Qstudio for Java). The impact levels indicate how well their needs are
satisfied.

6. Quality Control

This activity is performed to assure the quality of a product (or process). It is based on the
feedback loop, and consists of the following steps.

• Evaluate the quality of the product.
• Compare the outcomes to quality goals.
• Act on the difference.

QJ-Pro enables quality control on source code. The code quality goals are put in a coding
standard using the QJ-Pro rules. The coding standard specifies which rules should be selected
and how they must be configured within QJ-Pro. The developer uses these settings to
evaluate the source code and performs rework (guided by the observations, rule descriptions
and patterns) if there are non-compliance's. Example of a coding standard.

Concepts of QJ-Pro

Page 6
Copyright © 2004 GPL License. All rights reserved.

Rules Included:

• Impact level: 5, 4, 3
• Quality Attributes: Reliability, Maintainability, Efficiency

Rules Excluded

• 16: "Any variable that is initialized and never assigned to should be declared final."
• 131: "Replace magic numbers by more readable symbolic names."
• 137: "Use spaces rather than tabs to indent your program text."
• 139: "Surround branches of an if statement with braces, even if it contains only a single

statement."
• 147: "Provide javadoc comments for each public declaration."

Average maximum number of hits allowed per file:

• Impact level 5, 4: max: 0 (no hits allowed)
• Impact level 3: max: 0.5

Metrics Configuration:

• Configure check 50 "Static Path Count" to 100
• Configure check 51 "Average Static Path Count" to 20

Before software testing takes place, the Quality Engineer will use QJ-Pro to check if the code
meets the coding standard.

7. Continuous quality improvement

One of the key concepts of TQM is continuous quality improvement. As early as 1939 WA
Sheward defined the Plan-Do-Check-Act (PDCA) circle for continuous quality improvement.
Later on this approach is more familiarly known as the "Deming wheel". The Deming wheel
was designed for teams but can, as suggested by I. Masaaki, also be used for the individual
developer.

This approach is taken in the QJ-Pro CLI Wheel. Continuous improvement involves three
major activities that are successively performed by the developer.

• Check; Qstudio for Java is used to analyze the source code and check if the code does not
violate a selected rule set.

• Learn; the developer examines the analysis results, reads the rule descriptions and
patterns attached and learns why the code should be improved and how this can be done.

• Improve; the developer changes the code.

The tree activities define an improvement cycle that is performed continuously. Each cycle
further improves the quality of the code.

QJ-Pro offers features to support the developer in performing the CLI Wheel activities.

Concepts of QJ-Pro

Page 7
Copyright © 2004 GPL License. All rights reserved.

Various approaches for code improvement are possible.

• Coding Standard; a coding standard can be used as a baseline for improvement. The code
will improve by making it comply with a coding standard.

• Impact level; the code will improve by getting rid of hits on an impact level, starting with
level 5 and working down to level 1.

• Quality Attribute; the improvement can be focused towards quality attributes. As an
example the number of structuredness and clarity hits can be reduced.

• Java themes; the code can be improved by choosing a Java topic such as "Exception
Handling" and reducing the number of hits on this topic.

An essential characteristic of the CLI Wheel is that each improvement step lasts. The quality
of the Java code primarily depends on the expertise of the developer. A lasting improvement
of the code quality can only be achieved by increasing the know-how of the developer. The
learn activity therefor is an essential part of the CLI Wheel. The developer must have an in
depth understanding of the coding rule and the reason of improvement. Otherwise the same
inadequacy will reoccur.

8. Quality Impact Levels

QJ-Pro supports the software developer in making high quality Java code. Checks generate a
list of observations pointing to parts or lines of Java code that can be improved. The nature
and significance of these improvements vary over a wide range. There are observations that
point to improvements on programming style and -habits while others indicate risks on
program failure. The Quality Impact Level, ranging from 5 (most) to 1 (least), indicates how
significantly the i quality of Java code can be improved by implementing the rule that is
related to the observation. A Quality Impact level is assigned to each of the rules and
presented with the observation. It is suggested to work down the list of improvements and
start with the highest level.

Significance of improvement is related to the parties that are involved and share in the
benefits of quality source code. Assuming the situation that software developers participate
in software projects that develop software for users, the following three parties can be
recognized.

The Software Developer spends many hours in writing source code. The code quality for this
party is determined by the features of the programming language and in addition (s)he is
interested in coding best practices that make programming effective, efficient and enjoyable.

The Software Process Owner will try to setup a software development process that is
effective, efficient, flexible and predictable. The quality of the software process, among other
factors, is influenced by the quality of the code . The code quality for this party is determined
by the ability of fast and error free integration with other software parts and minimizing the

Concepts of QJ-Pro

Page 8
Copyright © 2004 GPL License. All rights reserved.

time needed for debugging and rework. In order to optimize teamwork and hand over code
ownership, the code should be clear and easy to understand.

The Software Product User will use the product as a personal instrument. The quality of the
software product is largely determined by the quality of the code . The code quality for this
party is determined by the ability to offer the required features and functionality and to be
reliable and fail safe.

The parties are not equally important to satisfy. The Software Product User, bringing in the
money, is most important. The Software Process Owner, offering reasonably priced software
within a limited development period, is of secondary importance and the Software
Developer, doing a professional job stands on the third place.

The above specified code quality requirements boil down into 5 increasingly important
levels. Impact Levels have been assigned "worst case". If an observation covers more Impact
Levels, e.g. a code construct might cause integration problems (level 3) , is hard to
understand (level 2) and there is a smarter way of doing it (level 1), then the highest level is
assigned. The advice given on improvement is downwards consistent. In the aforementioned
example, the advice will provide in a smarter code construct that rules out integration
problems and is easy to understand.

9. Definitions of impact levels

The Quality Impact Levels are defined according to the 5 levels.

Impact Level 5: "Software Failure" This is the most significant level because it relates to
the basic use of the software product. Level 5 observations point to a risk that the product
fails operation and can't be used. The program may stop or show no response. The code is
largely improved by changing the code according to the advice given.

Impact Level 4: "Software User" This is an important level because the user assumed
quality of the software is not satisfied. Level 4 observations point to a risk that parts of
functionality can't be used or that basic product features like performance, resource behavior,
user friendliness, accuracy, compliance are not within acceptable limits. Changing the code
according to the advice given will increase the user's judgment of the product quality.

Impact Level 3: "Software Process" This level relates to the (cost) effectiveness of the
software development process. Level 3 observations point to a risk that the development
efforts take longer than expected due to unforeseen problems, mismatches, inconsistencies
etc. Improving the code will lead to predictable and efficient software development.

Impact Level 2: "Development Team" This level is related to the effectiveness of
teamwork. Level 2 observations point to a risk that the code is difficult to understand by peer

Concepts of QJ-Pro

Page 9
Copyright © 2004 GPL License. All rights reserved.

developers because the code is unclear, complex, hardly documented etc. Improving the code
makes it easier to (re)use and maintain by others.

Impact Level 1: "Developer" This level is tight to the professionalism of the software
developer. Level 1 observations point to situations where best practices show that there is a
better alternative. Better in a sense that it is more elegant, easier to apply, smarter, shorter
etc. Improving the code will increase it's beauty and make the programmer more effective
and efficient as a result of the learning curve.

Impact Levels have been assigned "worse case". If an observation covers more Impact
Levels, e.g. a code construct might cause integration problems (level 3) , is hard to
understand (level 2) and there is a smarter way of doing it (level 1), then the highest level is
assigned. The advice given on improvement is downwards consistent. In the aforementioned
example, the advice will provide in a smarter code construct that rules out integration
problems and is easy to understand.

10. Quality Attribute Tree

QJ-Pro provides facilities for quality assessment and quality improvement of Java code .
International quality standards and guidelines, and common quality management techniques
are used as a basis for the quality related features of QJ-Pro.

The term "quality" has a very broad and general meaning and can't be used without
refinement. ISO/IEC 8402 defines it as " the totality of characteristics of an entity that bear
on its ability to satisfy stated and implied needs". By nature,"quality" is determined by a
number of "characteristics" that each contribute, in some extend, to the over all level of
quality. The most difficult tasks are: 1) to capture the characteristics of source code in a well
defined and consisted quality framework and 2) to make code quality measurable.

The most commonly used technique to set up a quality framework is the composition of a so
called "Quality Attribute Tree". The quality characteristics of an entity (e.g. cars, machines,
services, software etc.) are defined in a coherent set of leveled attributes and metrics. QJ-Pro
uses a three level quality attribute tree. The tree defines a stepwise refinement from the
general overall characteristic "Code Quality" into a more detailed set of quality attributes,
e.g., Reliability, Maintainability, Testability...... The quality attributes are further refined into
subattributes e.g. for Maintainability: Complexity, Conciseness, Modularity,
Structuredness....... and finally quality metrics are attached to the subattributes e.g. for
Complexity: Cyclomatic Complexity, Nesting Depth, Static Path Count...... These quality
metrics have been extensively described in literature.

In the following example a part of the quality attribute tree is presented. It shows how the
quality attribute "Maintainability" is elaborated into subattributes and metrics (only the

Concepts of QJ-Pro

Page 10
Copyright © 2004 GPL License. All rights reserved.

complexity metrics are shown).

Quality Tree
The advantage of such an approach is that the quality on multiple levels of detail can be
assessed by measurement. Measuring the score on Static Path Count reveals detailed
information on a specific type of Complexity. The developer might consider to change the
code when the Static Path Count exceeds 100. Having the scores of all Complexity metrics
makes it possible to assess the over all Complexity of the code. Results might show that
Static Path Count, compared to Nesting Depth, contributes very little to the over all
Complexity and restructuring initiatives might be started to improve the Nesting Depth.
Finally the over all Maintainability can be assessed by analyzing the scores of all metrics that
are related to the Maintainability subattributes. Again the balance between the various
subattributes can be analyzed and improvement activities could be considered.

QJ-Pro's key feature of static source code checking has been used to provide a quantitative

Concepts of QJ-Pro

Page 11
Copyright © 2004 GPL License. All rights reserved.

assessment of the source code quality. The following picture shows the quality attributes and
quality subattributes of the QJ-Pro quality attribute tree. The International Standard ISO/IEC
9126 has been taken as a baseline.

Quality Attribute Tree
The QJ-Pro quality attribute tree shows that, in addition to the above mentioned multiple
subattributes to attributes relation, it is also possible (and needed) that a subattribute is
related to multiple attributes. This is a fact of life that bears upon the deeper concepts of
quality. As an example, the subattribute Complexity relates to "Reliability" because complex
code usually contains more defects than less complex code, in addition Complexity relates to
"Maintainability" because complex code is hard to maintain and finally Complexity relates to
"Testability" because complex code requires more test cases to reach a sufficient test
coverage. The "many to many" relationship between attributes and subattributes introduces
no difficulties in using them for quality assessment or quality improvement. The quality is
assessed top down by evaluating the attributes first and then the subattributes and metrics.

During a static analysis run, the actual values of a set of international standardized Java code
metrics (e.g. Static Path Count, Cyclomatic Complexity, Nesting Depth, Depth of
Inheritance, Weighted Method Complexity, Comment Density, Coupling Between Objects,
Lack of Cohesion) is evaluated for each of the methods/classes. These values are used by the
metric based checks to generate observations depending on the user defined rating values
(maximum or minimum allowed values). An observation is generated each time a
method/class has a metrics value outside the allowed range. The quality of the code is

Concepts of QJ-Pro

Page 12
Copyright © 2004 GPL License. All rights reserved.

assessed by counting the number of generated observations (hits). The code quality gets
worse when the number of hits increases.

The QJ-Pro static analysis capability allows an integration of code quality metrics and code
improvement. There are two types of checks: rule based checks (i.e. checks that result in
observations on coding practices) and the metric based checks (i.e. checks that result in
observations on code quality metrics values), where each observation is accompanied with an
advice on improvement.

The rule based checks are also used for code quality assessment. Each of the rules is related
to a code quality characteristic. As an example check 37: Variable names "i", "j", "k", "m"
and "n" should be of type "int", is clearly related to the "Clarity" of the code. Name
conventions make code easier to understand. As for the metric based checks, the quality of a
specific quality characteristic is assessed by counting the number of hits.

The quality attribute tree serves as a classification structure for both the rule based checks
and the metric based checks. Each check is assigned to a quality subattributes. E.g. check 16:
"If a variable should never change it should be declared "final" is assigned to the subattribute
"Clarity", and check 50: "The Static Path Count exceeds the maximum allowed level for this
method" is assigned to the subattribute "Complexity". Multiple checks are assigned to each
of the quality subattributes.

Employment of a three level quality attribute tree for static code analysis has a number of
advantages. Tying the checks to the quality subattributes shows the developer, in a concise
and unambiguous way, how an observation is related to the (detailed) quality characteristics
of the code. With improving the code by following the advice given, it is clear how the code
quality improves. By counting the number of subattribute hits, a detailed quality
characteristic can be assessed quantitatively individually and for a batch of source files. The
quality attributes serve as an effective overall indicator. They are the most commonly used
standard software quality characteristics (ISO/IEC 9126). The overall quality can be
quantitatively assessed by counting attribute hits. QJ-Pro facilitates the reporting of
subattribute hit totals and attribute hit totals.

11. Quality Attribute definitions

Reliability: -definition- "The ability of a software product to keep operating over time
without failures that renders the system unusable". This is certainly the most feared attribute
and relates to the stigma "bad quality" because we expect a software product to operate
always. Any value less than 100% is hard to accept. Observations generated on reliability
indicate a risk that the product will fail during actual use.

Maintainability: -definition- "The aptitude of the source code to undergo repair and

Concepts of QJ-Pro

Page 13
Copyright © 2004 GPL License. All rights reserved.

evolution". Once the source code is released, the maintenance stage is entered. Modifications
to the source code are made as a result of growth, change of functionality or detected errors.
This stage of the life cycle tends to be very resource consuming. This attribute relates to the
amount of effort and time needed for maintenance activities. Observations generated on
maintainability indicate that changes are hard to implement.

Testability: -definition- "The amount of test resources needed to reach an acceptable test
coverage". The testing stages (which include problem solving) before release of software
should provide some degree of certainty that the product has the required features and that it
will operate without failures. An acceptable test coverage indicates that sufficient test cases
are performed to be able to judge if the product can be released. This attribute relates to the
amount of effort and time needed for (white box and black box) testing activities.
Observations generated on testability indicate that a great number of test cases might be
needed to reach an acceptable test coverage.

Portability: -definition - "The ability of the source code to be used on various user
environments and development environments". Software products are usually required to be
used on a variety of platforms. Although platform independence is Java's key feature, some
code constructs could decrease it's ability to operate on different platforms. Portability is also
important in cases of re-use. It should be possible to use the source code in various Java
development environments. Observations generated on Portability indicate risks that the
software product can't be used on specific user platforms or that the source code can't be used
"as is" in specific development environments.

Efficiency: -definition - "The ability of the software product to perform its functions related
to the amount of resources that are used". A software product needs resources to perform it's
functionality. Resources could be: time, memory, CPU capacity, files, I/O channels etc. This
attribute relates to the actual amount of resources that are needed. Software products that
need large amounts of resources have poor Efficiency. Observations generated on Efficiency
indicate a that resources can be more effectively used.

12. Quality Subattributes definitions

Failure Liability: -definition- "The possibility or probability that a product failure occurs as a
result of the applied coding practice". Observations with this subattribute indicate that there
is a risk that the software product will fail during use.

Complexity: -definition- "Source Code properties that offer great difficulty in understanding,
solving, or explaining". Observations with this subattribute indicate that it will be hard for
developers to understand the source code. As a result it will be difficult, time consuming and
error prone to add or change parts of the code.

Concepts of QJ-Pro

Page 14
Copyright © 2004 GPL License. All rights reserved.

Volume: -definition- "Source code quantities". Java source lines are contained in methods,
methods are contained in classes and classes build up the software product. QJ-Pro counts the
number of source lines, methods and classes. In a well balanced software product, the
number of source lines within a method and the number of methods within a class do not
exceed certain limits. Observations with this subattribute indicate that source code quantities
are out of proportion. As a result it is difficult to gain a clear view of the source code and
changes are hard to implement and error prone.

Conciseness: -definition- "The ability of source code to be marked by brevity of expression
or statement : free from all elaboration and superfluous detail". To give the reader a clear
picture of the meaning of of the source code it is important for programmers to be brief and
to the point. Observations with this subattribute indicate that there is a risk that the code is
hard to understand because of extra unnecessary statements. As a result it is difficult to gain a
clear view of the source code and changes are hard to implement and error prone.

Clarity: -definition- "The ability of source code to be fully revealed or expressed without
vagueness, implication, or ambiguity : leaving no question as to meaning or intent". The
software developer provides parts of source code based on the (technical) design of the
software product. This creative process is based on the knowledge and experience of the
developer and the line of reasoning during programming. A peer developer that wants to
understand the code has no other means than the statements itself to reveal the meaning.
Observations with this attribute indicate that there is a risk that the intend of the code is hard
to discover. As a result it will be difficult, time consuming and error prone to add or change
parts of the code.

Modularity: -definition- "The property of source code to be constructed with standardized
units for flexibility and variety in use". Modularization of source code is established to
facilitate reuse and to assign clearly defined interfaces to software parts. Observations with
this subattribute indicate that the used code construct reduces the modularity of the source
code. As a result the code is harder to reuse and there is a risk that the interaction between
software parts is unintelligible.

Structuredness: -definition- "The property of source code to be constructed with an
interrelation of parts in an organized whole".There are two aspects to this subattribute. The
Java language is an internally structured language and the developer has facilities to structure
the code. Observations with this subattribute indicate that the internal Java structures are not
adhered to or that the used code construct declines the software structure. As a result it is
more difficult to understand the function of software parts or the relation between the various
parts of a software product. In addition it is hard to extend the software product with new
code to add functionality.

Style Conformance:-definition- "Adherence of the source code to a convention with respect

Concepts of QJ-Pro

Page 15
Copyright © 2004 GPL License. All rights reserved.

to a particular manner, form, or technique by which the code is created". The world expertise
of Java programming increases over time. Experienced Java developers find new approaches
and the programming mastery is refined. Observations with this subattribute indicate that
there is a more accepted and elegant way of coding. As a result the source code conforms to
the worlds best practices of Java.

Development Environment Conformance: -definition- "The ability of source code to be used
in similar different development environments". In reuse situations, the developer uses parts
of code that have been developed by others. It is possible that the used code is developed in
another type of development environment. Observations with this subattribute indicate that
there is a risk that the source code can not be used in other development environments
without rework. As a result it will take some developers more time and effort to use the code.

User Platform Conformance: -definition- "The ability of source code to be used in different
user environments". The software product is usually required to operate on a wide variety of
platforms. Observations with this subattribute indicate that there is a risk that the software
product does not operate on some platforms. As a result some users can not use the software
product.

Time Behavior: -definition- "The properties of the source code with respect to response,
processing times and on throughput rates in performing its function". The user expects the
software product to react prompt and without needless waiting periods. Observations with
this subattribute indicate that the used code construct is less time efficient. As a result
processing- and response times are not optimal short.

Resource Behavior: -definition- "The properties of the source code with respect to the
amount of memory, processor time, file or network resources used in performing its
function".The software product needs computer resources to perform its functions.
Observations with this subattribute indicate that computer resources are less efficiently used.
As a result more computer resources are consumed than actually needed.

13. Definitions of terms

Check: a check is an action performed by the QJ-Pro Kernel. The check is either based on a
rule or a metric. The check is performed on source code. The output of a check is an
observation.

Metric: a way of assigning numbers to code features which is used to measure the Code
Quality.

Rule: a mutually agreed standard approach towards programming.

Pattern: a piece of practical knowledge put in a structured format. Patterns offer solutions to

Concepts of QJ-Pro

Page 16
Copyright © 2004 GPL License. All rights reserved.

practical problems. Patterns are used to communicate programming knowledge to the
developer, specially in cases where the developer offends general coding practices. The
pattern is issued based on (a combination of) checks.

Observation: the visual result of the check. This can be a warning message (checks based on
rules) or a value (checks based on metrics).

Concepts of QJ-Pro

Page 17
Copyright © 2004 GPL License. All rights reserved.

	1 Introduction
	2 Static Analysis
	3 Java patterns
	4 Total Quality Management
	5 Quality and Customer focus
	6 Quality Control
	7 Continuous quality improvement
	8 Quality Impact Levels
	9 Definitions of impact levels
	10 Quality Attribute Tree
	11 Quality Attribute definitions
	12 Quality Subattributes definitions
	13 Definitions of terms

